
WikiWho: Precise and Efficient Attribution of Authorship
of Revisioned Content

Fabian Flöck
Institute AIFB

Karlsruhe Institute of Technology, Germany
fabian.floeck@kit.edu

Maribel Acosta
Institute AIFB

Karlsruhe Institute of Technology, Germany
maribel.acosta@kit.edu

ABSTRACT
Revisioned text content is present in numerous collaboration plat-
forms on the Web, most notably Wikis. To track authorship of text
tokens in such systems has many potential applications; the identifi-
cation of main authors for licensing reasons or tracing collaborative
writing patterns over time, to name some. In this context, two main
challenges arise. First, it is critical for such an authorship track-
ing system to be precise in its attributions, to be reliable for further
processing. Second, it has to run efficiently even on very large
datasets, such as Wikipedia. As a solution, we propose a graph-
based model to represent revisioned content and an algorithm over
this model that tackles both issues effectively. We describe the op-
timal implementation and design choices when tuning it to a Wiki
environment. We further present a gold standard of 240 tokens
from English Wikipedia articles annotated with their origin. This
gold standard was created manually and confirmed by multiple in-
dependent users of a crowdsourcing platform. It is the first gold
standard of this kind and quality and our solution achieves an aver-
age of 95% precision on this data set. We also perform a first-ever
precision evaluation of the state-of-the-art algorithm for the task,
exceeding it by over 10% on average. Our approach outperforms
the execution time of the state-of-the-art by one order of magnitude,
as we demonstrate on a sample of over 240 English Wikipedia arti-
cles. We argue that the increased size of an optional materialization
of our results by about 10% compared to the baseline is a favorable
trade-off, given the large advantage in runtime performance.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document and Text Edit-
ing—Version control; K.4.3 [Computers and Society]: Organi-
zational Impacts—Computer-supported collaborative work; K.4.1
[Computers and Society]: Public Policy Issues—Intellectual prop-
erty rights

Keywords
Wikipedia; authorship; version control; content modeling; community-
driven content creation; collaborative writing; online collaboration

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2568026.

1. INTRODUCTION
Collaborative authoring of text-based content, such as Wiki pages,

shared editable documents or software code is a common sight on
the Web today. Most of these systems keep track of the different
revisions (i.e., versions) of the content created with every edit (or
commit). In this paper, we propose an approach to efficiently and
precisely assign the revision of origin – and with it, its author –
to particular text tokens (mostly whole words delimited by whites-
paces). While line-level tracking of changes is a feature of many
code revisioning systems, this level of attribution can prove insuf-
ficient in the case of a community that produces large amounts of
collaboratively written natural language text. A word-level track-
ing that is proven to be trustable in its attributions and that can trace
reintroductions and moves of chunks of text in an acceptable run-
time for end-users can prove very useful, especially on a platform
like Wikipedia, as has been previously discussed [6, 7]. While re-
search shows that Wikipedians are motivated by the recognition by
their peers that comes with authoring content [8], more practical
needs also exist [6]. To reuse a Wikipedia article under the CC-
BY-SA license, for example, might require to list the main authors
of the article, which are not easily retrievable as there exists not
straightforward way in the Mediawiki software to show authors of
single pieces of text for a particular revision.1 Authorship track-
ing in articles can further raise awareness by editors and readers
for editing dynamics, concentration of authorship [7], tracing back
certain viewpoints or generally understanding the evolution of an
article. Recently, Wikimedia Deutschland e.V. introduced the “Ar-
ticle Monitor”,2 aiming to assist users with these exact issues and
making use of the results of a basic authorship algorithm [7] whose
general concept we use as a foundation in this work. The Wikipedia
community has come up with a number of intended solutions re-
lated to the authorship attribution problem on word level, which
highlights the utility of such a solution for Wikipedians.3

As outlined in previous work [6], the attribution problem at this
fine-grained level and in highly dynamic environments like Wiki-
pedia is not trivial, as we will discuss when introducing our content
model in Section 3.1. Frequent reintroductions, content moves and
other actions can be hard to monitor. In code revisioning, similar
issues can emerge and finer-grained attribution techniques can have
similar merits, as small changes of a few characters might have
great effects, just as (re)introducing larger code chunks.

1https://en.wikipedia.org/wiki/Wikipedia:
Reusing_Wikipedia_content, CC-BY-SA: http:
//creativecommons.org/licenses/by-sa/3.0/
2http://tools.wmflabs.org/render/stools/
3https://en.wikipedia.org/wiki/Wikipedia:
Tools#Page_histories, cf. also Keppmann et al. [10]

Against this background, the main contributions of this paper
are: the model for revisioned content we propose (Section 3), the
algorithm we build upon that model (Section 4), the generation of
a gold standard for precision testing (Section 5.1.1) and the experi-
mental evaluation of precision, runtime and materialization size in
comparison to the state-of-the-art (remainder of Section 5).

Although we use the example of the English Wikipedia as inspi-
ration and testing ground, the proposed model and algorithm can be
understood as components of a more generally applicable method
for revisioned content. We are convinced that many of the assump-
tions made for the use case of Wikipedia also hold true not only for
other Wikis but also for other revisioned content systems.

2. RELATED WORK
In the context of Software Engineering, content attribution has

been studied in terms of code ownership. In programming, lines
of code are still used for measuring technical quality of source
code [4], as well as a basic unit to identify contributors. There-
fore, solutions to trace code ownership are designed to operate on
a coarse-grained level [13, 14]. Decentralized Source Code Man-
agement systems such as Apache Subversion [13] or Git4 provide a
feature to keep track of changes line-by-line. This functionality is
denominated blame or praise depending on the system. When
a contributor performs a change on a line of code, the system at-
tributes the whole line to that user. In this way, blame allows to
identify who last modified each line in a given revision of a file,
but the information about the origin of the content is unaccounted
for. The blame approach is a suitable solution to detect defects in
collaborative software development [15] as well as to select expert
developers for implementing required changes in programs [12],
yet does not provide an appropriate mechanism to trace the first
author of the content at a more fine-grained level such as single
words or special characters, to which we refer as “tokens” in the
remainder.

To detect authorship information in Wikipedia article text, sev-
eral analysis approaches have been employed. HistoryFlow by Vie-
gas et al. [17] assigns sentences of a text to the editor who created
or changed them. It doesn’t however acknowledge deleted content
that was later reconstructed as being written by the original editor.
More importantly, by operating on a sentence level, small changes
like spelling mistake corrections lead to wrongly recognizing the
correcting editor as the author of the whole sentence.

Wikitrust generates a visual mark-up of trusted and untrusted
passages in any Wikipedia article [3, 1, 2].5 To track authorship,
longest matches for all word sequences of the current revision are
searched for in the preceding revision and in previously existing,
but now deleted word-chunks. In this way, Wikitrust can as well
detect reintroduced words and assign the original author – an im-
portant feature, as “reverts” to formerly existing revisions are com-
monplace in Wikipedia. The underlying algorithm is, however, a
variation of a greedy algorithm [1], known to look for local op-
tima, which in the case of determining word authorship can lead
to grave misinterpretations when word sequences are moved rather
than inserted or deleted only [5].

Flöck and Rodchenko [7] introduce an authorship attribution ap-
proach for Wikipedia based on a tree model of paragraphs and sen-
tences. The precision of the results according to the evaluation lies
at 59.2% compared to 48.4% for Wikitrust, values that are rather
unsatisfactory for productive usage requiring users to place confi-
dence in the computed attributions. The work presented here builds

4http://git-scm.com/
5http://www.wikitrust.net/

on the foundations laid by [7], but formalizes a model based on a
k-partite graph to represent paragraphs, sentences and tokens much
more efficiently compared to the tree model of [7]. We also gain
over 30% in precision in respect to [7] by refining the conceptual-
ization of authorship and tokenization of text.

The most relevant related work, by de Alfaro and Shavlovsky [6],
proposes an algorithm for attributing authorship to tokens in revi-
sioned content based on the concept of processing content as se-
quences of neighboring tokens and finding “relevant” matches in
the revision history given a parameterized rarity function, for the
work in question defined as the length of the sequence. This means
that a token is uniquely identified solely by its local neighbours. To
store the authorship attributions the annotated revision history is re-
membered by means of a “trie” structure. A trie is a tree where the
authorship information is stored in the leaves, while the intermedi-
ate nodes are empty. The arcs of this trie are labeled with tokens.
All the arcs leaving a given node correspond to neighbors of the
token(s) represented in the label of the arc incoming to that node.
The algorithm is tested in terms of runtime and the size of a ma-
terialization (storage in secondary memory) of the results, but not
precision. It takes into account reintroduction of text and can keep
track of authorship on a word or smaller token level and therefore
conforms exactly to the goals set out for our work.

3. MODELLING REVISIONED CONTENT
The following subsections outline our model for representing re-

visioned content.

3.1 A Model Based on Observations of
Real-world Revisioned Writing

When observing collaborative writing in systems that rely on
long-term, incremental refinement by a large group of users, namely
Wikipedia and its sister-projects, certain patterns become salient.
In the following we list our conclusions from these observations
and from studying related literature (e.g., [9, 11, 17]). These asser-
tions build the conceptual foundation for the content model devel-
oped in Section 3.2.

The first assessment is that a considerable part of editing activ-
ity after the initial basic writing phase consists of moving, deleting
and reintroducing content, while not adding much new subject mat-
ter per edit. A notable number of edits consists of reintroductions,
which are mostly reverts due to vandalism; another reason for re-
verts is, e.g., an “edit war” between disagreeing factions. Moves of
text sequences are also a regular sight, where a sentence or para-
graph gets shifted to another position in the article without alter-
ations. Another sizeable amount of edits is predominantly changing
only very small parts of the article per edit, incrementally revising
the text. This pattern is occasionally interrupted by a burst of new
content; for instance, in case of a larger addition or a fundamental
re-write. Still, very often the changes implemented per edit do not
span more than one section or paragraph – frequently, they don’t
even transgress the boundary of a sentence. These assertions point
out that methodically keeping track of reused or relocated content
plays an important role when intending to efficiently monitor au-
thorship over large data in such a system.

Regarding the conceptual definition of “authorship”, the larger
context of a token plays a crucial role. The paragraph or the sec-
tion it is embedded in can be as important for the interpretation
of its meaning as its immediate token neighbours in a sequence.
The same exact string of tokens, even up to the length of a sen-
tence (e.g., a figure of speech), might mean something completely
different in one section of a text (e.g., an introduction) than in an-
other segment, where it was potentially introduced for a different

purpose. It can therefore not necessarily be seen as an exact copy
of the same sequence in another position, entailing the attribution
of the same author. An example: One editor writes the sequence
“A theory is that” in front of a factual statement A at the top of an
article. Later, a different editor adds the same four words ahead
of a completely different statement B. Both authors use the same
terms and add the assertion that the subsequent statements are mere
theories instead of proven facts. Yet, the declaration that “state-
ment B is a theory” can only be attributed to the later editor as
the first author used the same chain of words in a different context
and with a completely different goal (namely to call statement A
a theory). This also applies, e.g., if two authors use an identical
literature reference in order to prove different facts. Basically, just
by comparing local neighbours of words, as it is done by de Al-
faro and Shavlovsky [6], who in practice use four-word sequences,
the larger context of the tokens is not taken into account. Extend-
ing these neighbour-tracking sequences to sentence or paragraph
length, on the other hand, is not constructive, as this would contra-
dict the initial idea of exact word-level author attribution.

Tracking provenance hierarchically, by assigning tokens to a lar-
ger enclosing unit (sentences), and linking these to another super-
ordinate element like a paragraph provides a more exact identifi-
cation of tokens than mere local contextualization. Another key
advantage compared to the method of [6] is that not all tokens in
the text have to be analyzed if the enclosing unit has already been
identified as unchanged or as reintroduced from an earlier revision.
This enables a more rapid processing of the data, as changes, like
mentioned above, often only affect fractions of the whole article.

3.2 A Graph-based Model for Revisioned Text
Content

We propose a model to represent revisioned content as a k-partite
graph, where the content is partitioned into units of discourse in
writing, i.e., paragraphs, sentences and tokens (which can consist
of words or single characters as we will explain in Section 4.3).

In order to illustrate the representation of revisioned content with
the proposed model, consider a Wiki page with three revisions r0,
r1 and r2 as depicted in Figure 1. The first revision, r0, contains a
single paragraph, p0, which is composed of only one sentence, s0,
with two tokens (t0 and t1). The labels over the arcs represent the
relative position of the nodes. For instance, the token t0 and t1 are
located in positions 0 and 1 of the sentence s0, respectively. The
second revision, r1, creates two new paragraphs, p1 and p2. The
paragraph, p1, is written by reusing the sentence s0 from revision
r0 followed by a new sentence, s1. The third revision, r2, reuses
paragraph p2 from the previous revision and creates two new para-
graphs, p3 and p4. In addition, p3 contains a new sentence which
reuses the token t2 originally inserted in the previous revision.

Definition 1. (A graph-based model for revisioned content). Given
a revisioned content document, it can be represented as a k-partite
graph, with k = 4, G = (V,E,N0, φ) defined as follows:

• The set of vertices V in G is composed of four different sub-
setsR, P , S, T , i.e., V = R∪P∪S∪T . The subsetR repre-
sents the revisions of a given document, P the paragraphs of
the document, S the sentences that compose the paragraphs,
and T the tokens (words, special characters, etc.) in the sen-
tences. The subsets R, P , S, T are pairwise disjoint.

• The set of arcsE inG is partitioned into k−1 cuts as follows:
E = 〈R,P 〉 ∪ 〈P, S〉 ∪ 〈S, T 〉. The arcs in G represent
the relationship of containment, e.g., if p ∈ P , s ∈ S and
(p, s) ∈ E then the paragraph p contains the sentence s.

0	

0	

 0	

0	

 0	

1	

0	

r0	

p0	

s0	

t0	

 t1	

r1	

 r2	

0	

 1	

p1	

 p2	

s1	

0	

 1	

t2	

 t3	

0	

1	

s2	

t4	

0	

p3	

 p4	

1	

 2	

s4	

 s5	

s3	

1	

 0	

t5	

 t6	

 t7	

0	

0	

0	

1	

Figure 1: Example of the revisioned content graph. Revisions are
represented by nodes r, paragraphs by p, sentences by s, and tokens
by t. Arcs between nodes correspond to the containment relation.

• A labelling mapping φ : E → N0 over the arcs in G repre-
sents the relative position of a token, sentence or paragraph
in a sentence, paragraph or revision, respectively. Each arc is
labeled only once, therefore these labels are not updated.

Additionally, it is necessary to keep record of the sequence in which
the revisions were generated. Since adding arcs between revision
nodes violates the partite graph definition, we represent this infor-
mation by annotating the revision nodes with an identifier (label)
such that if revision ri is a predecessor of revision rj , the condition
following condition is met: label(ri) < label(rj).

3.3 Restrictions Over the Model
In the following we present the restrictions to guarantee consin-

tency within the model. We refer to paragraphs, sentences or tokens
as ‘content elements’.

The first property refers to the number of content elements within
a revision. Particularly, this property allows the definition of an
empty revision (with no content elements).

Property 1. The number of arcs that leaves a revision vertex (de-
noted deg+(·)) must be greater than or equal to 0.

∀v ∈ R(deg+(v) ≥ 0) (1)

The second property restricts the existence of empty paragraphs
or sentences, i.e., each paragraph or sentence must contain at least
one content element.

Property 2. The number of arcs that leave a paragraph or sen-
tence vertex must be greater than 0.

∀v, v ∈ P ∨ v ∈ S(deg+(v) > 0) (2)

The following property establishes that paragraphs, sentences or
tokens must be associated to at least one revision, paragraph or
sentence, respectively.

Property 3. The number of incoming arcs of a paragraph, sen-
tence or token vertex must be greater than 0.

∀v, v ∈ P ∨ v ∈ S ∨ v ∈ T (deg−(v) > 0) (3)

The last property refers to the labelling of the arcs that leave a
given vertex. This property states that each content element (para-
graph, sentence or token) can only occupy a single relative position.

Property 4. The label of an arc that leaves a vertex in R, P or S
must be between 0 and the number of arcs that leaves that vertex.

The set of arcs that leave a vertex is denoted as d+(·). Moreover,
the labels of the arcs that leave a given vertex must be unique.

∀v, v ∈ R∨ v ∈ P ∨ v ∈ S(∃e ∈ d+(v)(0 ≤ φ(e) < deg+(v))

∧ ∀e1, e2 ∈ d+(v)(e1 6= e2 → φ(e1) 6= φ(e2)) (4)

3.4 Operations Over the Model
We define four different operations over the model that corre-

spond to the actions that can be performed by editing a document.
In the following, path(a, b) is defined as the set of paths from ver-
tex a to vertex b. The first operation defines the creation of a new
(initially empty) revision, which consists of adding a vertex to the
set of revision vertices.

Definition 2. (Creation of a new revision). Let ri−1 be the last
revision in the graph. The operation createRevision(ri) repre-
sents the creation of a new revision (denominated current revision)
and is defined as follows:

R := {ri} ∪R (5)

After the newly created revision ri is added to the set of revisions,
the corresponding label of ri is assigned as follows:

label(ri) := |R| − 1 (6)

The following operation allows creating a new paragraph, sen-
tence or token in a certain position of a given revision, paragraph or
sentence, respectively. This operation consists of adding a vertex to
the corresponding vertex partition, and an edge in the correspond-
ing arc cut annotated with the position of the element.

Definition 3. (Creation of content). Let x and y be content el-
ements such that y is a new element to be added in x at position
α. The operation createContent(x, y, α), with α = φ((x, y)), is
defined as follows: P := {y} ∪ P ∧ 〈R,P 〉 := {((x, y), α)} ∪ 〈R,P 〉 if x ∈ R

S := {y} ∪ S ∧ 〈P, S〉 := {((x, y), α)} ∪ 〈P, S〉 if x ∈ P
T := {y} ∪ T ∧ 〈S, T 〉 := {((x, y), α)} ∪ 〈S, T 〉 if x ∈ S

(7)
In addition, the creation of an element y in a given revision ri meets
the following condition:

∃ρ(ρ ∈ path(ri, y)) (8)

The third operation defines the action of copying, or reintroducing,
content from an old revision. This operation consists of creating an
arc from the content element of the current revision to the copied
element, and labeling the arc with the relative position of the ele-
ment in the current revision.

Definition 4. (Copying content from an old revision). Let ri
(i > 0) be the current revision and ri−k (0 < k ≤ i) an old
revision. Let x and y be content elements such that y is an element
copied from revision ri−k in the element x of revision ri at posi-
tion α. The operation copyContent(x, y, α), with α = φ((x, y)),
is defined as follows: 〈R,P 〉 := {((x, y), α)} ∪ 〈R,P 〉 if x ∈ R, y ∈ P

〈P, S〉 := {((x, y), α)} ∪ 〈P, S〉 if x ∈ P, y ∈ S
〈S, T 〉 := {((x, y), α)} ∪ 〈S, T 〉 if x ∈ S, y ∈ T

(9)

In addition, copying an element y from revision ri−k to revision ri
meets the following condition:

∃ρ(ρ ∈ path(ri−k, y)) ∧ ∃ρ′(ρ′ ∈ path(ri, y)) (10)

The last operation is the deletion of content, which models the
case when content from the previous revision is removed. This
operation requires no alteration on the structures of the model, since
elements are never removed from revisioned content.

Definition 5. (Deletion of content). Let ri (i > 0) be the cur-
rent revision and y the element from the previous revision to be
removed. The deletion of y in ri meets the following condition:

∃ρ(ρ ∈ path(ri−1, y)) ∧ @ρ′(ρ′ ∈ path(ri, y)) (11)

4. AUTHORSHIP ALGORITHM
This section describes the implementation of an authorship attri-

bution algorithm based on the presented model.

4.1 The Authorship Attribution Problem
The authorship attribution problem consists of identifying for

each token the revision in which the token originated. This problem
has been previously introduced [6], where each token is annotated
with an origin label denoted as Θ. In the following we devise a the-
oretical solution to the authorship attribution problem for a given
token, built on top of the proposed graph-based model.

THEOREM 1. (A solution to the authorship attribution prob-
lem). Let G = (V,E,N0, φ) be the graph of a given revisioned
content, modelled according to Definition 1. The authorship of a
token t can be determined by identifying all the revisions where the
token occurs and selecting the revison that was generated first in
sequential order, i.e., the revision with the minimum label.

∀t ∈ T (Θ(t) := min {label(ri)|∃ρ(ρ ∈ path(ri, t)) ∧ ri ∈ R})

PROOF. We want to demonstrate that if t (t ∈ T) originated in
revision ri (ri ∈ R), then Θ(t) = label(ri). By contradiction,
lets assume that t originated in ri, but Θ(t) 6= label(ri). There-
fore, we have two cases: Θ(t) < label(ri) or Θ(t) > label(ri).
Furthermore, there exists a revision rj (rj ∈ R) such that Θ(t) =
label(rj). By hypothesis, t didn’t originate in rj but in ri. There-
fore, t must have been copied from ri to rj . According to Defini-
tion 4, an element can only be copied from an old revision, thus the
case Θ(t) < label(ri) is discarded. In the other case, we can affirm
that ri is a predecessor of rj , thereforemin(label(ri), label(rj)) =
label(ri). By the definition of Θ(t), the only possibilty for not se-
lecting ri as the origin of t is that there does not exist a path from
ri to t (contradiction to Definition 3).

4.2 Implementation of the Proposed Solution
We have demonstrated that our proposed model provides a straight-

forward solution to the authorship attribution problem in revisioned
content. In the following we devise an algorithm to build this model
while generating origin labels of tokens simultaneously. The source
code and further information are available online.6

Algorithm 1 outlines our proposed solution, WikiWho, an algo-
rithm that constructs a graph according to Definition 1 to represent
a document with revisioned content. WikiWho follows a breadth-
first search (BFS) strategy to build the graph structures for each
revision and assings the corresponding origin labels to each token.

In order to illustrate the execution of Algorithm 1 consider the
revisioned content presented in Figure 2. In this example, the docu-
ment D is composed of three revisions: Revision 0, Revision 1 and
Revision 2. The algorithm starts processing Revision 0, and creates
the corresponding revision node r0 (Algorithm 1, line 4). Then, the
content is split into paragraphs; in our example there is only one
6http://people.aifb.kit.edu/ffl/wikiwho/

Algorithm 1 WikiWho algorithm
Input: A documentD with revisioned content r0, r1, ...rn−1.
Output: A graphG = (V,E,N0, φ) representing the revisioned content fromD.

1: create an empty graphG = (V,E,N0, φ)
2: create an empty queueQ
3: for i in 0, 1...n− 1 do
4: G.createRevision(ri)
5: label(ri)← i
6: y′← tokenize(ri)
7: enqueue (ri, y) ontoQ for all y in y′

8: xprev ← NULL
9: diffed← FALSE
10: whileQ is not empty do
11: (x, y)← Q.dequeue()
12: if x is a sentence ∧ !diffed then
13: calculate diff of unmarked tokens of ri−1 against unmarked tokens

of ri (i > 0)
14: diffed← TRUE
15: end if
16: if x = xprev then
17: α← α+ 1
18: else
19: α← 0
20: xprev ← x

21: end if
22: if y ∈ V ∧ y is not marked then {detects reintroduction of content}
23: G.copyElement(x, y, α)
24: mark all the nodes reachable from y, including y
25: else
26: G.createElement(x, y, α)
27: if y is a token then
28: Θ(y)← label(ri)
29: else
30: z′← tokenize(y)
31: enqueue (y, z) onto Q for all z in z′

32: end if
33: end if
34: end while
35: unmark all the marked nodes
36: end for
37: return G

paragraph (p0), which is split into a single sentence (s0). Once the
algorithm has tokenized all the sentence nodes, it proceeds to calcu-
late the diff operation (line 13) between the current text and token
nodes from the previous revision.7 For the first revision, this opera-
tion corresponds to diff(‘’, ‘One house .’), i.e., empty
content diffed vs. the tokens of r0. The diff output states that all
the tokens in revision r0 are new and the algorithm creates the cor-
responding token nodes (line 26), and annotates them with Θ = 0.
The current state of the graph is presented as the leftmost of the
three sections of Figure 3.

One house. One house.
Two trees.

One house.
Three trees. D:

Revision 0 Revision 1 Revision 2

Figure 2: Example of a document D with revisioned content. D
contains three revisions, each one with a single paragraph.

After processing Revision 0 in Figure 2, in the next iteration the
algorithm creates the revision node r1. In this revision the para-
graph has changed w.r.t. to the previous revision, therefore the
node p1 is created. One of the sentences of p1 corresponds to s0
– created in revision r0 – and the algorithm marks all the nodes
7For the actual implementation, the difflib library of Python
was used: http://docs.python.org/2/library/
difflib.html

(r1, 	

 p1)	

(p1, 	

 s0)	

(s1, 	

 Two)	

(p1, 	

 s1)	

(r0, 	

 p0)	

(p0, 	

 s0)	

(s0, 	

 One)	

(s0, 	

 house)	

(s0, 	

 .)	

(s1, 	

 trees)	

(s1, 	

 .)	

(r2, 	

 p2)	

(p2, 	

 s2)	

(s2, 	

 Three)	

(s2, 	

 trees)	

(s2, 	

 .)	

1	

 3	

 4	

0	

 1	

 2	

 3	

 4	

Queue Q: Queue Q:

0	

 1	

 2	

 3	

 4	

 5	

 0	

 2	

Queue Q:

0	

0	

0	

1	

r0	

p0	

s0	

One	

 house	

r1	

0	

p1	

s1	

0	

1	

.	

2	

Two	

 trees	

 .	

r2	

0	

p2	

s2	

0	

1	

Three	

0	

1	

2	

 0	

1	

2	

Θ = 0 Θ = 0 Θ = 0 Θ = 1 Θ = 1 Θ = 1 Θ = 2

diff(‘’, ‘One house .’) !

+ One + house + .!

diff(‘’, ‘Two trees .’) !

+ Two + trees + .!

diff(‘Two trees .’, !
 ‘Three trees .’) !

+ Three!

Figure 3: Execution of WikiWho for the example from Figure 2.
Sections delimited by dashed lines represent the state of the graph
after each revision. At the bottom, the progress of the queue Q and
the output of the diff for each revision iteration are depicted.

reachable from s0, including s0. This is a case of reintroduction
of content and it is detected by the Algorithm 1 on line 22, since
the analysed vertex is already in the graph and has not been used
previously in the current revision since it is not marked. The other
sentence in p1 is new, therefore the node s1 is created. At this step,
the diff is calculated over the sentence ‘Two trees .’ and
the set of unmarked token nodes from r1 (which is ∅). The three
tokens are identified as new and annotated with Θ = 1. The state
of the graph at the end of this iteration is illustrated by the combi-
nation of the left and the middle section of Figure 3.

In the last iteration of the example, the node r2 is created. This
revision contains a new paragraph p2, composed of s0 and a new
sentence s2. After processing the sentences, the algorithm calcu-
lates diff(‘Two trees .’, ‘Three trees .’). Note
that the sentence ‘One house .’ is not considered by the diff,
since these nodes were marked when s0 was processed. According
to the diff, only the token ‘Three’ is new and is annotated with
Θ = 2. Figure 3 depicts the current state of the graph.

4.2.1 Representation of Content Nodes
As explained earlier, revision nodes are uniquely annotated with

a label (line 5 of Algorithm 1), usually representing the sequential
order in which the revisions were generated. In a Wiki environ-
ment, the revision identifier provided may serve as a label in Wiki-
Who. Paragraph and sentence nodes are identified by a hash value.
The hash value is the result of applying the MD5 algorithm [16]
over the content of the paragraph or sentences, respectively. Token
nodes contain the actual text of the revisions, i.e., the single tokens
that compose the revisioned content. WikiWho annotates the token
nodes with their corresponding origin label (Θ), as shown on line
28 of Algorithm 1. This avoids the calculation of all the paths from
revision nodes to a token to retrieve its authorship information.

4.2.2 Implementation of Operations
One crucial operation of WikiWho is determining whether a cer-

tain node y belongs already to the graph (line 22 of Algorithm 1).
Depending on the type of the node, this step can be implemented
differently. When y is a paragraph or a sentence, the algorithm only
checks the corresponding node partition, i.e., if y ∈ P or y ∈ S,

respectively. When y is a token, the decision whether the token is
new or not relies on the output of the diff operation (line 13).

On lines 6 and 30, Algorithm 1 performs the tokenization of the
text unit that is currently being processed. Tokenization refers to
the process of splitting the text into more fine-grained units. We
define a token as the smallest unit, be it indivisible. Details regard-
ing the definition of grammatical units are discussed in Section 4.3.

Once the graph is built, accessing the authorship information for
each computed revision is straightforward. The origin labels of the
content in ri can be retreived by traversing the graph G with any
search approach, e.g., depth-first search (DFS), considering ri as
the root node and visiting the nodes in the order induced by φ.

4.3 Design Issue: Tokenization
To achieve authorship attributions that correspond to the “origi-

nal” author of a given token, it is important to chose the tokeniza-
tion very carefully in respect to the specific context of the system
and its usage. An overly fine-grained tokenization – e.g., on char-
acter level – might prove counter-productive if it is not necessary
to determine the origin of single characters and make the interpre-
tation of the results too complex for end-users. On the other hand,
using only demarcations such as periods to identify sentences can
prove too coarse. Whole tokens can in that case spuriously be reat-
tributed to new authors even when only minor adjustments are ap-
plied. As the optimal tokenization can vary immensely between
different contexts, we concentrated here on a Wiki environment, es-
pecially Wikipedia. We believe, however, that the presented design
choices are applicable as well for other Wikis that follow roughly
the same patterns of editing and collaborative writing.

When processing the complete source text of articles, as we do
with WikiWho, it is not only important to take into account the in-
tricacies of natural language (as it appears on the article front-end)
and a corresponding optimal tokenization, but also the function-
oriented “Wiki markup” language of the Mediawiki software.8 Small
changes in the markup can entail important changes in the front-
end of an article, be it for instance the inclusion of a template via
only a few pasted characters or the setting of links. Consider the
following example, where a contributor writes the word Germany
and another contributor in a subsequent revision adds markup con-
tent to represent the same word as an internal link ([[Germany]]) to
the respective article. Using only white spaces as separators would
lead to counting the latter string as a new token; using a similarity-
metric like a Levenshtein distance might lead to an attribution of
the whole string to the former author. What actually happens here
is that the word “Germany” was written by one author and the link
(specified with “[[” and “]]”) was set by another. Both are elemen-
tally important and distinct actions in Wikipedia. Many more of
these examples could be given, pertaining to templates, language
links, references and numerous others.

Besides white spaces we chose the most commonly used func-
tional characters of the Wiki markup as delimiters, such as “|”, “[”,
“]”, “=”, “<”, “>”, to name some. We further split sentences (as
defined in our model) at common sentence delimiters such as “.”,
“?” etc., and paragraphs at double line breaks, which are used in
Wikipedia to begin a new paragraph in the text. All delimiters
were also treated as tokens, as they fulfill important functions in
the text. We determined all of these demarcations after extensive
testing with real article data until we reached a splitting we deemed
optimal to achieve the best balance of precision and efficiency.9

8http://en.wikipedia.org/wiki/Help:Wiki_
markup
9The list appears in Text.py, part of the algorithm implementation.

4.4 Optimization for Wiki Environments: Van-
dalism Detection

The most expensive operation of the proposed algorithm is the
diff. We are interested in detecting those vandalism attacks that
change large amounts of content from one revision to another, sig-
nificantly affecting the performance of the diff operation. There
are different types of vandalism in Wikipedia, such as removing
large parts of a page, or modifying a page in a way that adds a lot
of vandalistic content.10 In order to avoid the computation of the
diff in the previous cases, we implemented two simple vandal-
ism detection techniques that don’t impose a large computational
overhead and filter out only the most obstructive cases that would
increase runtime notably.

Percentage of size change from one revision to another.
This mechanism is triggered when a large amount of content gets

removed at once, by comparing the current content size versus the
size of the previous revision. An example of this type of vandalism
is page blanking, which signifies deleting all the content of a Wiki
page.11 Since the size of the early revisions of a Wiki page can
fluctuate notably, this technique is fired only when the revisions
have reached a certain size. To not filter out revisions where much
content is moved to a different article in good faith, we analyze the
edit comment log provided in the article history dumps.

Token density.
This proposed technique aims at detecting vandalism that con-

sists of adding large amounts of disruptive content, often composed
of the same text repeated numerous times. For these cases, we pro-
pose a measurement called token density, defined as follows. Con-
sider the bag of tokens of a revision r as the result of splitting the
revision’s content with a tokenization mechanism. This bag can
be formally represented as a multiset Tr , which consists of a set
T ′r – constructed from removing duplicates in Tr – and a function
m : T ′r → N0 that denotes the number of times an element of T ′r
occurs in Tr . We calculate the token density as follows:

tokenDensity(Tr) =

{ ∑
t∈T ′r

m(t)

|T ′r|
if Tr 6= ∅

0 if Tr = ∅

A high token density suggests that the content is composed of the
same words. From this computation we discard tokens correspond-
ing to Wiki markup elements, since they appear several times in an
edit and might be misinterpreted as vandalism. These vandalism
filters must be configured with very relaxed thresholds such that no
false positives are generated, which was successfully achieved with
the values set in the experiments of this work (cf. Section 5.2.2).
Note that the objective of implementing these techniques is to avoid
the computation of the diff operation on large amounts of irrele-
vant content. We do not aim at applying these techniques as general
solutions for the problem of vandalism detection in Wikis.

5. EXPERIMENTAL STUDY
We empirically analyzed the performance of the proposed algo-

rithm WikiWho and compared it to the algorithm “A3” by de Alfaro
and Shavlovsky [6], which can be regarded as the current bench-

10http://en.wikipedia.org/wiki/Wikipedia:
Vandalism_types

11http://en.wikipedia.org/wiki/Wikipedia:
Page_blanking

mark for the given task.12 In our experiments we report on the ex-
ecution time of the evaluated algorithms as well as their precision
in finding the correct revision of origin for a token. Regarding pre-
cision, this is the first evaluation for both algorithms. The datasets,
gold standard and further details of the experimental results are
available online.13 For all articles analyzed in the following evalua-
tions, the full history in XML format was retrieved from the English
Wikipedia via the MediaWiki Special:Export mechanism.14

5.1 Evaluation of Precision
In the following we explain the three-step procedure to construct

and validate the gold standard. We measured the quality of the eval-
uated algorithms by comparing their authorship attributions with
the results of the gold standard.

5.1.1 Creating a Gold Standard for Authorship in
Revisioned Content

To create the gold standard we selected 40 English Wikipedia ar-
ticles. Ten articles each were randomly picked from the following
four revision-size ranges:15 articles with i) over 10,000 revisions,
ii) 5,000-10,000 revisions, iii) 500-5,000 revisions and iv) 100-500
revisions. The reason for this grouped sampling process was to in-
clude a sufficient number of articles that present a challenge to the
algorithms when picking the correct revisions of origin, as a higher
number of revisions naturally increases the difficulty of the task, as
more candidate solutions exist.16 The latest revision at the point
of retrieval of the articles was the “starting revision” for whose to-
kens the authorship was determined and which is denoted in the
gold standard. The text plus markup of each of the 40 articles was
split into tokens as described in Section 4.3. Out of this tokenized
content, for each article, six instances were randomly selected, re-
sulting in a total of 240 tokens. For each of these, the final gold
standard contains the revision in which they first appeared (revision
of origin) and the starting revision. To assign the correct revision of
origin to all of these tokens, we followed three consecutive steps.

STEP 1: Three researchers of the AIFB institute, including the
two authors, manually searched the “Revision History”17 of the re-
spective 40 articles for the origin of each of the 240 tokens in the
gold standard independently from each other. No common inter-
pretation of what constitutes a “correct origin” was agreed on be-
forehand but was entirely up to the individuals. If the researchers
initially disagreed on the correct origin of a token, this disagree-
ment could in most cases be resolved. Only in three cases was this
not achieved, so that they were excluded from the gold standard
and replaced with new randomly selected tokens.

STEP 2: Next, the gold standard was validated by users of the
crowdsourcing platform Amazon Mechanical Turk (hereafter called
“turkers”).18 We selected two random tokens for each article in the
gold standard. We then created a Human Intelligence Task (HIT)
on Mechanical Turk for each of these 80 tokens to be validated by
10 distinct turkers each. We paid 15 US$ cents and selected turkers

12Retrieved from: https://sites.google.com/a/ucsc.
edu/luca/the-wikipedia-authorship-project

13http://people.aifb.kit.edu/ffl/wikiwho/
14http://en.wikipedia.org/wiki/Special:Export
15The “random article” feature of Wikipedia was used. Redirect or
disambiguation pages where skipped.

16Articles under 100 revisions are not challenging for the task. We
did sample test-runs with non-crowdsourced test answers and both
algorithms scored very close to a precision of 1.0.

17Example for the article “Korea”: https://en.wikipedia.
org/w/index.php?title=Korea&action=history

18http://www.mturk.com

with a past acceptance rate of over 90% and at least 1,000 com-
pleted HITs.19 A HIT was composed of the following elements:

a) A link to a copy of the starting revision of the Wikipedia ar-
ticle with the highlighted token. If the token only appeared in the
markup, we represented an excerpt of the markup as a picture next
to the front-end text where it appears in the article HTML, explain-
ing to look for it in the markup.

b) A link to the Wikipedia “Difference View” of the revision of
origin proposed by the gold standard. It shows which changes the
edit introduced that lead to that revision.20

c) Detailed instructions explaining how to use the above men-
tioned pages and a description of what solution was sought. Three
different conditions had to be fulfilled by the proposed revision:
First, a string equivalent to the token should indeed have been added
in that revision (and not only be moved inside the article text). Sec-
ond, the token added should be the “same” token as highlighted in
our gold standard solution. We explicitly left it open to the turkers
to interpret what “same” meant to them and gave only one simple,
unambiguous example, explaining that not any string matching the
gold standard token was looked for but the specific token in the con-
text that it is presented in (e.g., if the token was a specific “and”,
we would not be looking for any “and”). The third condition was
that the token was actually added in the given revision for the first
time and not just reintroduced, e.g., in the course of a vandalism
revert. Turkers could chose between one answer option indicating
“correct revision”, three choices pointing out various errors and a
fifth option with a text box if they had found a revision that was
more likely to be the origin of the token. For option 5, we offered a
bonus payment of 5 US$ to propose a better solution than the one
presented and gave a detailed manual on how to search the revision
history page of a Wikipedia article by hand as well as a list of tools
by the Wikimedia community that can be helpful with the task.

RESULTS OF STEP 2: The 800 answers we received as the result
of this experiment included 24 answers suggesting a better solu-
tion, but none of them fulfilled all three conditions. We therefore
reposted these HITs once we assessed them. As these turkers had
spent 17 minutes on average for the task and obviously had tried
to find a better solution, they were paid bonuses ex-post. Overall,
turkers spent from 40 seconds to 13 minutes solving the task, with
an average of 4 minutes 49 seconds. Turkers thus spent consider-
able time assessing the correctness of the presented solutions.21

We report on the results aggregating the answers of the “incor-
rect” options (option 5 was handled as mentioned above). On av-
erage, the solutions received 89% agreement. 65 tokens received
nine to ten out of ten agreement votes. 12 solutions received 8/10
and three received 7/10 “correct” votes. In the latter cases the dis-
agreeing turkers pointed in 7 of 9 answers at the lack of a matching
string being added in the suggested revision, although this was in
fact the case.22 Overall, we consider the result of this experiment
to compellingly support the proposed gold standard solutions.

STEP 3: As a further test we ran the WikiWho algorithm as well
as the A3 algorithm (in two different variants), as explained in the
following Section 5.1.2. For 67 of the 240 tokens in the gold stan-
dard at least one of the algorithms produced a result deviating from

19The pay rate was the result of a number of tries with rates at 10
and 13 cents that did not attract enough turkers.

20Example diff: https://en.wikipedia.org/w/
index.php?title=Korea&diff=574837201

21This excludes 12 turkers whose HITs were rejected and reposted
for obviously incorrect answers, such as choosing option 5 and not
reporting a better solution.

22We believe this could have been because of particular nature of
the respective diffs, where the token was hard to track.

the gold standard. For all of these 67 tokens we set up a Mechan-
ical Turk experiment with the same settings as explained in step
2. In this HIT, however, we presented the turkers with three dif-
fering possible revisions of origin and asked them which one was
most likely correct or if none of them was (option 4). One of the
three solutions was always the gold standard answer and one or two
were solutions by one of the algorithms, depending on how many
algorithm results disagreed. If only two differing solutions were
available, the third one was filled with an incorrect control answer.
Answer positions were randomly changed in each HIT.

RESULTS OF STEP 3: 670 single answers were retrieved for the
67 tokens. The general agreement score for the gold standard solu-
tion was 81%, with 7/10 or more votes validating the gold standard
as correct for 63 tokens. Given the nature of the task and the differ-
ent possible interpretations, we consider the gold standard to have
gained a solid affirmation for these tokens. In four cases, however,
the turkers disagreed decisively with the gold standard. In two of
these instances, there was complete disagreement over the right so-
lution, while in two other examples four users each endorsed the
differing WikiWho and the differing A3 solution, respectively. We
therefore removed these tokens from the following evaluation in
5.1.2 since a certain solution for these cases is lacking.23 The re-
maining 63 tokens achieved an agreement of 83%.

As a conclusion to these three steps of quality assurance we can
assume that the gold standard is sufficiently robust to test algorithm
precision against it. We are however publishing the gold standard
and encourage the community to assess and expand it further.

5.1.2 Measuring the Precision of the Algorithms
After validating the gold standard, WikiWho and A3 algorithms

were tested for their ability to correctly detect the revisions of ori-
gin for each token. The evaluation metric was precision defined as:
p = TP

TP+FP
, where a true positive (TP) means that the author-

ship label computed by the algorithm is matching the gold standard
described in 5.1.1 and otherwise is a false positive (FP).

Three articles in the gold standard from the revisions-size bracket
over 10,000 had to be excluded due to technical reasons and are
hence exempt from all following experiments to guarantee the same
data basis.24 The remaining 37 articles encompass 218 tokens.

The A3 algorithm we retrieved includes a filter that seems to be
intended to remove the Wiki markup that does not appear on the
HTML front-end of an article.25 More important is however that
all citations and references get discarded, although they appear in
the front-end and can in some cases make up large parts of the arti-
cle, not to mention their functional importance for the credibility of
Wikipedia articles. Hence we ran one variant of the A3 algorithm
with this markup filter disabled (henceforth “A3 MF-OFF”)26, also
because our aim was to compare WikiWho to another algorithm
that is able to process the entire source text. The unaltered version
of the A3 algorithm will be referred to as “A3 MF-ON”. A3 MF-
ON yielded results for 138 of the 218 tokens as the remaining part
was filtered out. We therefore compared its output to the result for
the same 138 tokens by WikiWho, as can be seen in the lower part
of Table 1. A3 MF-OFF produced output for the whole set and we
compared it to the full results of WikiWho, listed in the upper part
of Table 1.

23We marked these cases in the published gold standard accordingly.
24The A3 algorithm did not process these articles despite several in-
tents to resolve the issue. The files were unaltered XML-dumps
from the Wikipedia servers. The articles are “Vladimir Putin”,
“Apollo11” and “Armenian Genocide”.

25The filter is not described in [6].
26Apart from this change the settings used in [6] were replicated.

Table 1: Precision comparison of WikiWho and A3
x ∈ ALL [10k,∞) [5k,10k) [500,5k) [100,500)

Full sample

p WikiWho 0.95 0.97 0.93 0.95 0.95

p A3 0.77 0.77 0.64 0.76 0.87MF-OFF
Gain in p by 0.18* 0.20* 0.29* 0.19* 0.08WikiWho
Available 218 58 42 58 60results n

Sample restricted to output
of A3 MF-ON (n -80)

p WikiWho 0.96 0.97 0.89 1.00 0.95(restricted)
p A3 0.81 0.69 0.70 0.88 0.95MF-ON
Gain in p by 0.15* 0.28* 0.19 0.12* 0.00WikiWho
Available 138 39 27 34 38results n

Notes: n = number of tokens, k = one thousand, p = precision, x = number of
revisions per article, * = difference significant at 0.05 (paired t-test)

WikiWho scores at 18% and 15% higher precision overall, re-
spectively for the full and the restricted token sample. As becomes
evident from the results, the gain in precision by WikiWho turned
out especially high for the two biggest revision-size brackets, while
it is lower for the 5000 to 50,000 bracket and much lower and non-
existent, respectively, for the smallest-size bracket. On one hand,
this seems to indicate that for articles with up to 500 revisions,
the difference between the two approaches is negligible and both
have a very high precision. Given the long tail of small articles in
Wikipedia, this is a very encouraging result. On the other hand,
with increasing editing activity and therefore growing number of
revisions of an article, it seems to become harder for the A3 algo-
rithm to correctly determine the authorship of certain tokens, while
WikiWho can sustain a high level of precision, even for articles
with over 10,000 revisions. Given the steady growth of Wikipedia
and the size of other revisioned content these approaches might
be adaptable to, this is an important aspect of scalability. More-
over, particularly when processing the much “dirtier” Wiki markup,
WikiWho seems to have a notable advantage when it comes to pre-
cisely determining authorship.

5.2 Evaluation of Execution Time
We measured the algorithm time for computing authorship la-

belling of revisioned content from Wikipedia pages.
5.2.1 Experimental Set-up

We used two datasets created by retrieving the full revision his-
tory content for each article from the English Wikipedia in XML
format.14 Dataset 1 was generated by randomly selecting Wiki
pages in the article namespace that were no redirects or disam-
biguation pages. This dataset is comprised of 45,917 revisions in
210 articles, i.e., an average number of 219 revisions per article;
the average revision size is 2,968 KB. Dataset 2 contains the Wiki
pages used in the quality evaluation presented in Section 5.1.1. Its
articles are larger, with an average number of revisions of 5,952
and an average revision size of 461,522 KB per article. This al-
lowed for some "heavy load" testing. This last dataset is composed
of 36 articles with a total of 214,255 revisions.27

27We excluded again the three articles mentioned in Section 5.1.2
as well as "Jesus", as it would run over 5 hours for some settings.

We defined execution time as the time elapsed between the point
when the algorithm reads the first revision and the point when the
authorship labelling of the last revision of a given article is com-
puted. Both algorithms are implemented in Python and the time
was measured with the time.time() command from the Python
library. The experiments were all executed on a dedicated OS X
machine with a 2.5 GHz Intel Core i5 processor and 4GB RAM.

5.2.2 Algorithm Settings
The A3 algorithm was set according to the configuration pre-

sented by de Alfaro and Shavlovsky [6], with sequence length as
the rarity function and a threshold equal to 4. The tokenization
implemented by A3 uses only whitespaces as delimiters. In addi-
tion, A3 employs two types of filters. First, a content ageing filter
that limits the number of revisions to be analyzed by excluding the
content from old revisions according to the values of the thresholds
∆N and ∆T ;28 in our experiments, we used the original configura-
tion of the algorithm(∆N = 100, ∆T = 90). Second is the Wiki
markup filter, which we discussed in Subsection 4.3. The Wiki
markup affects the amount of content to be processed in each itera-
tion and we thus studied the performance of the algorithm with this
filter on (A3 MF-ON) and disabled (A3 MF-OFF).

Regarding the WikiWho vandalism detection mechanisms (cf.
Section 4.4), we empirically set up their thresholds by performing
tests on a random article sample. In the experiments, the value for
the change percentage filter was equal to−0.40, and the token den-
sity was set to 10. This resulted in 0.5% of revisions being filtered.
As discussed in Section 4.3, the definition of tokenization units is
an important factor that affects the quality as well as the perfor-
mance of the algorithm. We studied the performance of WikiWho
in two variations of tokenization plus one additional setting:

• WikiWho complex tokenization (CT): We implemented the
tokenization described in Section 4.3, considering the Wiki
markup. This is the original algorithm we propose.

• WikiWho simple tokenization (ST): Tokens are obtained
by splitting the raw content using only whitespaces as delim-
iters. This setting was used to assess which additional load
the complex tokenization adds by generating a much higher
number of tokens to track.

• WikiWho ST and content aging filter on (ST/AF-ON): We
implemented the content aging filter described for A3, with
∆N = 100. This setting and the A3 MF-OFF configuration
allow to compare the algorithms under similar conditions.

5.2.3 Results
We executed each setting 5 times and report on the average time

per article, revision and Kilobyte. The runtime results for all set-
tings are listed in Table 2. Figure 4 plots the time results in relation
to increasing total article history size, meaning average revision
size times number of revisions.29 The figures include the function
for a fitted linear regression, showing that for the A3 settings the
runtime increases with growing article size by a much larger fac-
tor than for the WikiWho variants. Although the WikiWho perfor-
mance seems to be more volatile, we can observe that the behavior
of all the settings in both algorithms is consistent in general and
increases in a linear or almost linear fashion with an increasing
content size. Fluctuations between data points suggest that the ex-
ecution time is also influenced by other properties of articles, e.g.,
the amount of content modified from one revision to another.

28∆N limits the processed content to a maximum of N most recent
revisions, while ∆T further filters out revisions older than T days.

29As both values influence the runtime. Text includes Wiki markup.

Table 2: Execution time of algorithm settings
Algorithm Avg. time Ratio of Avg. time Avg. time
setting per article runtime per revision per KB

(secs.) (base: ST) (secs.) (secs.)

Dataset 1
ST 0.84 1:1 0.0038 2.84x10−4

CT 1.04 1:1.24 0.0047 3.49x10−4

ST/AF-ON 1.32 1:1.57 0.0061 4.46x10−4

A3 MF-OFF 14.30 1:17.02 0.0654 4.82x10−3

A3 MF-ON 17.69 1:21.05 0.0809 5.96x10−3

Dataset 2
ST 184.97 1:1 0.0322 4.01x10−4

CT 284.44 1:1.54 0.0495 6.16x10−4

ST/AF-ON 290.97 1:1.57 0.0506 6.30x10−4

A3 MF-OFF 2834.37 1:15.32 0.4931 6.14x10−3

A3 MF-ON 2559.38 1:13.84 0.4452 5.55x10−3

The runtime decrease by WikiWho in contrast to A3 is in the
range of one order of magnitude, differing over the settings. The
two most comparable settings ST/AF-ON and A3 MF-OFF differ
by a factor of 10.83 and 8.80, respectively for the two datasets,
while the originally proposed setting CT completes the task in an
even shorter time. It appears that the time filter is in fact no ac-
celerator for the WikiWho algorithm, supposedly because it cre-
ates more overhead than is saved by not processing older revisions.
The A3 algorithm shows the same behavior in Dataset 1. Still, for
Dataset 2 the markup filter seems to take effect, presumably be-
cause in longer revisions the amount of filtered content is larger.

Overall, WikiWho is able to execute the given task of computing
authorship in a very efficient manner and outperforms the A3 algo-
rithm significantly in runtime in all variants. This is possible due
to the construction of paragraph and sentence nodes comparable to
creating indexes over the text. This allows to efficiently detect large
chunks of text that remained unchanged between revisions, vastly
reducing the number of necessary comparisons at the token level.

5.3 Evaluation of Materialization Size
Since revisioned content is in constant production – particularly

in the English Wikipedia, where over 3 Million revisions are cre-
ated monthly30 – it might be useful to materialize partial compu-
tation in order to allow incremental data processing, i.e., the algo-
rithm can be stopped at a certain point in time and then resume its
execution. Therefore, we implemented a JSON serialization mech-
anism to optionally materialize partial computation. We measured
the overhead caused by the serialization in terms of space.

5.3.1 Experimental Set-up
We used the articles contained in the two datasets presented in

Section 5.2, and serialized the computation of the authorship labels
of the whole page history for each article. We compared the seri-
alization mechanism of WikiWho and A3 under similar conditions
with the settings ST/AF-ON and MF-OFF, respectively. Both al-
gorithms WikiWho and A3 utilize the cjson Python library31 to
implement the (de-)serialization mechanisms. Since we are com-
paring the agorithms with content aging filter set to ∆N = 100, we
report on the size of the JSON serialization in relation to the size of
the last N = 100 revisions of each article.

30According to the Wikimedia Statistics of June 2013:
http://stats.wikimedia.org/EN/SummaryEN.htm

31https://pypi.python.org/pypi/python-cjson

0

50

100

150

200

250

300

0 5000 10000 15000 20000 25000 30000 35000 40000

A
lg

or
ith

m
 ti

m
e

(s
ec

on
ds

)

Total article history size (KB)

A3 MF-ON

A3 MF-OFF

WikiWho ST

WikiWho CT

WikiWho ST/AF-ON

y	
 =	
 0.006x	
 -­‐	
 0.03	
 |	
 R²	
 =	
 0.98	

	

y	
 =	
 0.005x	
 -­‐	
 0.43	
 |	
 R²	
 =	
 0.99	

	

y	
 =	
 0.0003x	
 -­‐	
 0.10	
 |	
 R²	
 =	
 0.35	

	

y	
 =	
 0.0003x	
 +	
 0.19	
 |	
 R²	
 =	
 0.65	

	

y	
 =	
 0.0005x	
 -­‐	
 0.19	
 |	
 R²	
 =	
 0.59	

	

(a) Performance in Dataset 1 (Articles randomly selected)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 500000 1000000 1500000 2000000 2500000 3000000

A
lg

or
ith

m
 ti

m
e

(s
ec

on
ds

)

Total article history size (KB)

A3 MF-ON

A3 MF-OFF

WikiWho ST

WikiWho CT

WikiWho ST/AF-ON

y	
 =	
 0.005x	
 +	
 274.6	
 |	
 R²	
 =	
 0.92	

	

y	
 =	
 0.006x	
 +	
 118.61	
 |	
 R²	
 =	
 0.84	

	

y	
 =	
 0.0004x	
 +	
 0.02	
 |	
 R²	
 =	
 0.83	

	

y	
 =	
 0.0007x	
 -­‐	
 16.14	
 |	
 R²	
 =	
 0.83	

y	
 =	
 0.0006x	
 +	
 17.61	

|	
 R²	
 =	
 0.57	

	

	

(b) Performance in Dataset 2 (Articles used in quality evaluation)

Figure 4: Algorithm execution time evaluation for different settings
of WikiWho and A3 in Dataset 1 and Dataset 2 – the fitted linear
functions are denoted by y, respectively for the data series on the
left (fit lines omitted and data points partly omitted for readability)

5.3.2 Results
Figure 5 plots the results of the materialization for WikiWho and

A3. The behavior of the two algorithms is in general consistent.
When the size of the revisioned content increases, the relative size
of the serialization decreases exponentially. This suggests that both
algorithms efficiently represent redundant content. On average, the
size of the serialization is 66% for WikiWho and 56% for the A3
algorithm with respect to the total size of the last 100 revisions.
Figure 5 further depicts the percentaged difference of the WikiWho
minus the A3 materialization with increasing content size. It shows
a volatile behavior with a clear linear trend.

Weighing the cost of storing the results for small articles versus
the average time to calculate authorship labels with WikiWho, ma-
terializing these results does not bring additional benefits; on the
contrary, it incurs on extra space and time. Therefore, the proposed
serialization mechanisms should be executed only when the time
to compute the authorship labels over the whole article history ex-
ceeds a “reasonable” response time, e.g., wait time for end users.
Using the “worst case” linear estimation of the originally proposed
setting CT for Dataset 1 (cf. Figure 4), a hypothetical maximum
runtime of 5 seconds would allow to process all articles with up to
16,033 KB complete revision history text size without the need for
materialization. As far as we can estimate by a random sampling
from the Wikipedia database, at least half of all articles in the En-

-1

0

1

2

3

4

1 10 100 1000 10000 100000

Total history size in KB (log scale)

WikiWho ST/AF-ON
A3 MF-OFF

-1

0

1

2

3

4

1 10 100 1000 10000 100000

Pe
rc

en
ta

ge
 o

f s
iz

e
of

 m
at

er
ia

liz
at

io
n

w
.r.

t.
si

ze
 o

f t
he

 la
st

 1
00

 re
vi

si
on

s

Total size of the last 100 revisions in Bytes (log scale)

Difference of
WikiWho minus A3

Figure 5: Performance in Dataset 1 (Wiki pages randomly selected)
– article “Rankin County” at y-axis values 10.69 (WikiWho) and
11.13 (A3) not shown for readability

glish Wikipedia currently stay under this size limit.32 The needed
storage space can of course be further reduced by relaxing the run-
time constraint. For articles over this limit, intervalls of revisions
can be determined when a materialization becomes necessary, al-
though this is beyond the scope of this paper.

6. CONCLUSIONS AND FUTURE WORK
In this work we have proposed WikiWho, a solution for the attri-

bution of authorship in revisioned content. We built a graph-based
model to represent revisioned content, and provided a formal so-
lution to the authorship problem. In order to measure the quality
of WikiWho, we created a gold standard of over 240 tokens from
Wikipedia articles, and corroborated it via crowdsourcing. It is, to
our expertise, the first gold standard of this kind to measure the
precision of authorship attributions on token-level. We compared
WikiWho against the state-of-the-art, exceeding it by over 10% on
average in precision, and outperforming the baseline execution time
by one order of magnitude. Our experimental study confirmed that
WikiWho is an effective and efficient solution.

Although in this work we restricted the use of WikiWho to sin-
gle articles, it is also possible to operate it over several articles in a
Wiki, tracking the movement of text between different pages. We
used the English Wikipedia as inspiration and testing ground, yet
the proposed solution can be understood as a more generally appli-
cable method for revisioned content. We are convinced that many
of the assumptions made for our use case also hold true for other
Wikis and also for other revisioned content systems.

Future Work: We plan to study further techniques to optimize
the materialization of intermediate computation. Since each article
may show different editing patterns (in terms of size and number of
revisions), it is benefical to adapt the frequency of the serialization
routine for each article. We will also look at compression mecha-
nisms that allow to reduce the size of the materialization. Currently,
we are establishing an API for WikiWho to allow querying for the
authorship of articles from the English and German Wikipedia.33

Acknowledgements
We thank Andriy Rodchenko and Felix Leif Keppmann for their
contributions to this research. This work was partially supported
by grants from the European Union’s 7th Framework Programme
under grant agreement number 257790 (FP7-ICT-2009-5).

32https://wiki.toolserver.org/view/Database_
access

33Will be available at http://wikiwho.aifb.kit.edu

7. REFERENCES
[1] T. Adler and L. Alfaro. A content-driven reputation system

for the Wikipedia. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages
261–270, 2007.

[2] T. Adler, K. Chatterjee, L. Alfaro, M. Faella, I. Pye, and
V. Raman. Assigning trust to Wikipedia content. In
International Symposium on Wikis, 2008.

[3] T. Adler, L. de Alfaro, I. Pye, and V. Raman. Measuring
author contributions to the Wikipedia. In Proceedings of the
4th International Symposium on Wikis, WikiSym ’08, pages
15:1–15:10, New York, NY, USA, 2008. ACM.

[4] R. Baggen, J. Pedro Correia, K. Schill, and J. Visser.
Standardized code quality benchmarking for improving
software maintainability. Software Quality Journal,
20(2):287–307, 2012.

[5] R.C. Burns and D.D.E. Long. A linear time, constant space
differencing algorithm. In Performance, Computing, and
Communications Conference, 1997. IPCCC 1997., IEEE
International, pages 429–436. IEEE, 1997.

[6] L. de Alfaro and M. Shavlovsky. Attributing authorship of
revisioned content. In Proceedings of the 22nd international
conference on World Wide Web, WWW ’13, pages 343–354,
Republic and Canton of Geneva, Switzerland, 2013.
International World Wide Web Conferences Steering
Committee.

[7] F. Flöck and A. Rodchenko. Whose article is it
anyway?–Detecting authorship distribution in Wikipedia
articles over time with WIKIGINI. In Online proceedings of
the Wikipedia Academy 2012. Wikimedia, 2012.

[8] A. Forte and A. Bruckman. Why do people write for
Wikipedia? Incentives to contribute to open-content
publishing. In Workshop of Sustaining Community: The Role
and Design of Incentive Mechanisms in Online Systems.
Sanibel Island, FL, pages 6–9, 2005.

[9] J. Jones. Patterns of revision in online writing a study of
Wikipedia’s featured articles. Written Communication,
25(2):262–289, 2008.

[10] F. L. Keppmann, F. Flöck, A. Adam, E. Simperl, D. Rusu,
G. Holz, and A. Metzger. A knowledge diversity dashboard
for Wikipedia. In Proceedings of the ACM WebSci’12, New
York, NY, USA, Juni 2012. ACM.

[11] A. Kittur, B. Suh, B. A. Pendleton, and E. H. Chi. He says,
she says: Conflict and coordination in Wikipedia. In
Proceedings of the SIGCHI conference on Human factors in
computing systems, CHI ’07, pages 453–462, New York, NY,
USA, 2007. ACM.

[12] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi,
M. Gethers, and D. Poshyvanyk. Triaging incoming change
requests: Bug or commit history, or code authorship? In
Software Maintenance (ICSM), 2012 28th IEEE
International Conference on, pages 451–460, 2012.

[13] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick.
Version control with subversion. O’Reilly Media, Inc., 2009.

[14] C. R. Prause. Maintaining fine-grained code metadata
regardless of moving, copying and merging. In Source Code
Analysis and Manipulation, 2009. SCAM ’09. Ninth IEEE
International Working Conference on, pages 109–118, 2009.

[15] F. Rahman and P. Devanbu. Ownership, experience and
defects: a fine-grained study of authorship. In 33rd
International Conference on Software Engineering (ICSE),
pages 491–500, 2011.

[16] R. Rivest. The MD5 message-digest algorithm. United
States, 1992. RFC Editor, MIT and RSA Data Security, Inc.

[17] F. B. Viégas, M. Wattenberg, and K. Dave. Studying
cooperation and conflict between authors with history flow
visualizations. In Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI ’04, pages
575–582, New York, NY, USA, 2004. ACM.

